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Summary. A novel approach of space symmetry adaptation is developed for 
multiconfigurational (MC) functions in fully optimized reaction space and com- 
plete active space SCF calculations. The bonded tableau and two box symmetric 
tableau are basic representations (rep) of configuration functions; the group sym- 
metric localized orbitals are used as one-electron orbitals. The method is proposed 
for generating a complete and orthonormal set of MC single excited functions. The 
redundant variable in MCSCF can be eliminated by symmetry adaptation. 
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1 Introduction 

The spatial symmetry adaptation of configuration functions [,1 3] is more difficult 
than spin adaptation, particularly for higher symmetry point groups. A general 
method for point group symmetrization of configuration functions is proposed by 
using the group symmetric localized molecular orbitals (SLMOs) as one-electron 
orbitals [-4-7]. We here further introduce this method for fully optimized reaction 
space (FORS)SCF [-8, 9] and complete active space (CAS)SCF [-10-13] calcu- 
lations. The multiconfigurational single excited (MCSX) functions defned by 
Ruedenberg et al. [9] are neither normalized, mutually orthogonal, nor linearly 
independent. Typically the number of the effective orthogonal basis (i.e. the 
dimension of the SX space) is an order of magnitude lower than the number of 
standard SX functions. The present work proposes a method for generating the 
linearly independent MCSX functions which constitute a complete and orthogonal 
set for MCSCF calculations. The spatial symmetry adaptation can eliminate the 
redundant parameters in coefficient variance and orbital variance. 

2 Spatial adaptation of MC functions 

Based on the FORSSCF and CASSCF methods, let the sum of electrons be N, the 
sum of orbitals be n in orbital variance space of the molecule, the number of core 
orbitals be no, the number of core electrons be No, the number of active orbitals 
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be na, the number of active electrons be Na, and the number of virtual orbitals be nv, 
then 

N = No + Na, (1) 

n = no + na + nv. (2) 

Suppose that the one-electron orbitals consist of SLMOs: re(l, 1), m(2, 1) . . . .  , 
m(j, i), . . . ,  m(n, d), where the first are core orbitals, those in the middle are active 
orbitals, and the latter are virtual orbitals, re(j, i) expresses SLMO, j is an orbital 
notation, i is the notation of subspace spanned by equivalent orbitals, and d is the 
sum of subspaces. Let g be the group element of molecular point group G, then all 
re(j, i) satisfy 

gin(j, i) = ~m(j', i), (3) 

where j and j '  belong to subspace i and ~ is the phase factor. Let n(i) be the 
dimension of the subspace, and x the sequence number of orbitals in subspace 
i (ic, i,, iv point core, active and virtual space, respectively), re(j, i) may be written as 
m(j(x),  i). The element g of G can be classified as a coset and written as g(i, x, y); 
it satisfies 

g( i, x, y)m(j(1) ,  i) = ~(x, y )m(j (x) ,  i), (4) 

where {g(i, 1, y)y  = 1, ... ,y(i)} spans a subgroup G(i) of G; g(i, x, 1) (x = 2, ... ,n(i)) 
is a coset generator; g(i, 1, 1) is identity; y(i) is the order of subgroup G(i); and 
~(x, y) is the phase factor. Suppose that occupied numbers in each active subspace 
are defined, i.e., 

Na = EN(ia) ,  (5) 

0 < N( ia )  < 2n(ia). (6) 

The subspace i can be decomposed into one or some irrepresentations (irreps) 
r of G. Each subspace has a character vector {G(i)} = {G,(i), r = 1, ... ,Gr)}, 
where Gr is the numbers of irreps. If subspace i contains irrep r then 

Gr(i) = 1, otherwise Gr(i) = O. 

The N-electron function space V(n, N, S, Sz) is spanned by bases of spin- 
adapted antisymmetrized products (SAAPs) [1]. Because the core space is doubly 
occupied in each configuration, the dimension f (n ,  N, S, S~) of V(n, N, S, Sz) is 
equal to the dimensionf(na,  Na, S, Sz) of V(n,,  IV,, S, S~) and less than the result 
calculated from the formula of Paldus-Weyl [1, 14] due to the restriction condition 
(1), (2), (5), (6). 

The SAAPs are defined as 

4~ = Auf2OOA, (7) 

where AN is an antisymmetrizer and f2o is a space orbital product 

~2o = ml(1)m2(2) --. raN(N), (8) 

and the spin function is given by 

OA = 2-1/2 [-~(S1)/~(tl ) __ ~( t l  )/~(Sl )-] X 2-1/2 [ O : ( S 2 ) f i ( t 2 )  - -  O ~ ( t 2 ) f l ( S 2 ) ]  . . .  

= [1 [e(s)fi(t) -- a(t)fi(s)] [ I  o:(k), (9) 
st k 
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where (st) extends over all pairs and k over unpaired electrons. Let R be a permuta- 
tion of indices s l , s2  . . . . .  t~, t2, ... : 

OA = R - I O o  

= R - a 2 - ~ / 2 [ ~ ( 1 ) f l ( 2 )  -- ~(2)fi(1)32 -~/2 [a(3)fl(4) - ~(4)fl(3)3 -.-, (10) 

where 

(11) 

or  

Pw = IN+(1),  " " , N + ( x ) ,  "'" ,N+(a)] ,  

Q w = [ N - ( 1 ) , ' " , N - ( x ) , " ' , N  (a)], (19) 

where N + (x) (or N-  (x)) = 1 or 0 occurs depending upon whether the active orbital 
(the sequence number is x) occurs in Eq. (18) or not, a is the sum of active orbitals. 

obtaining a new expression for the bonded function 

cI)A = A N R -  10AO0 = eANY2AO0, (12) 

where e is the parity of R, and f2o is replaced by (2A. It can be proved [151 that 

cl)A = eCOOAVSA O0 (15) 

where co and m are projectors of the symmetric group which operates the orbital 
and spin spaces, respectively, and e is a normalization factor. The spin-independent 
Hamiltonian is determined by the spin-free bonded function 

BT = ecoQA, (16) 

which is called a bonded tableau (BT) [15] (a young tableu of two column). The BT 
an simply be represented as PQ, where P is the orbital product of the first column, 
and Q is the orbital product of the second column in BT. 

P = ] m l , m 2 ,  .. . ,m(N/2+s)], 

Q = I11, 12, . . . ,  l(N/2-s) l. (17) 

Therefore, the spin-free configuration functions in V ( n , N , S ,  Sz) can be ex- 
pressed by BT, a given symmetric linear combination of net space orbital products. 
Because n, N, S, Sz and the restriction conditions of Eqs. (1), (2), (5), (6) are definite 
for any configuration, the space V(n,  N,  S, Sz) spanned by the BT can simply be 
written as V(B) .  BTs (VB structure of multi-electron) are one-one correspondence 
with the standard young tableau of a two-column graph, in which the numbers 
increase from top to bottom and do not decrease from left (first column) to right 
(second column). But in the BT the second column can decrease from top to 
bottom, and each two-box describes a two-center bond or long-pair orbital. On the 
other hand, orbitals in the tail of a BT have parallel spins. The BT also may be 
expressed as a linear combination of a two-box symmetric tableau (TST's) of 
CAUGA (i.e. irreps of U(2")) [16]. The TSTs are the eigenfunctions of S~, but not 
eigenfunction of S a. They are basis functions in V(n,  N ,  Sz). TST is represented by 

P = Ira1, ma, "" ,m(N/2+s)] ,  

Q = I l l ,  12, " " , l ( N / 2 - s ) ]  (18) 
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We define the net integer numbers p, q as [6, 16] 

p = 1 + ~ 2 " - ~ ( 1  -- N+(x)), 
X 

q = 1 + ~ 2 a - x ( 1  -- N-(x)) (20) 
X 

[pq] or IT express a TST, ]pq[ or IB express a BT, {pq} or I express the BT or TST. 
We consider the value of {pq} as smaller than {p'q'} if p < p' or if p = p', then 
q < q'; thus {pq} in V has a sequence number according to its value. BTs and TSTs 
can be classified according to the following principle: 

1. Because the one-electron orbitals in BTs or TSTs are SLMOs, {pq} can only 
be transformed into (up to a phase) another or itself and no mixture of different 
{pq} is generated under the action of any element of the molecular point group 
G[6J. So we have 

g{pq} = g{p'q'} or gI = ~I', (21) 

where ~ is a phase factor. 
2. {pq} is eigenveetor to the number operators (Exx, x = 1, . . . ,  n) [6]: 

Exfl = WxI, (22) 

with a set of eigenvalues (occupation numbers) 

{W(I)} = {Wx(I), x = l - n } ,  (23) 

which constitutes the weight W(I) of I, I is said to be of higher weight than I' if 
WI(I) > WI(I') or if WI(I) = W1(1'), then W2(I) > W2(I'), etc. We consider 
W(I) and W(I') as equivalent if I '  = gl. 

3. The space V is classified by K, which is a sequence number of the subspace 
spanned by a set of {pq} having equivalent weight 

V} V(K). (24) 

The highest weight in V(K) is represented by W(1, K). V(K) is successively 
divided into subspaces invariant under G, and c expresses the sequence number of 
these subspaces: 

v} V(K)} V(K, c), (25) 
i.e. 

and 

V} V(K)} VB(K,c) (26) 

V} V(K) > VT(K, c). (2"7) 

In V(K, c) the I having highest weight and the least value is called the basic 
state and is written as I(K, c, I). 

4. Subspace V(K,c) defines a subgroup G(K, c), g(K,c, 1, y) (y = 1, ... ,y 
(K, c)) is its element, g(K, c, 1, 1) is identity, y(K, c) is the order of subgroup G 
(K, c), and g(K, c, x, 1) (x = 2, ... ,n(k, c)) is a coset generator 

g(K, c, x, y)I(K, c, 1) = ~(x, y)I(K, c, x). (28) 

The subspace V(K, c) can be decomposed into irrep r of G. Each subspace has 
a character vector { G(K, c)} = { Gr(K, c); r = 1-Gr} if V(K, c) contains irrep r; then 
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GdK, c) = 1, otherwise G ( K ,  c) = O. 
5. Projectors of G are represented by P~,, where r labels the irrep, u labels the 

component belonging to multidimensional irrep. Suppose: 

or, general 

ST(K,c ,r ,u)  = Pr, IT(K,c,  1), 

SB(K, c, r, u) = P~ulB(K, c, 1), 

(29) 

(30) 

S(K, c, r, u) = Pr, I (K,  c, 1). (31) 

The S(K, c, r, u) is a space symmetry-adapted basis if Gdk, c) = 1. It is a linear 
combination of configuration functions in V(K, c). 

6. 1T(K, c, x) and ST(K, c, r, u) are orthogonal sets, and Is(K,  c, x) having 
different weight are also orthogonal to each other, but IB(K, c, x) having the same 
weight are nonorthogonal in the general case. VB(K, c) usually contains one or 
some VT(K, c). Let nT(V) be the number of VT(K, c) in V; nB(V) be the number of 
VB(K, c); the linearly independent IB and riB(V) are less than corresponding IT and 
nT(V), respectively. The dimension riB(V, r) of irrep r is equal to or less than nB(V). 
The dimension nT(V, r) of irrep r is equal to or less than nT(V): 

VB(K, c) = y, VT(K, c'), (32) 

IB = Z IT' (33) 

SB(K, c, r, u) = ~ ST(K, c', r, u), (34) 

nT(V, r) >1 nB(V, r), (35) 

J~T(V, r) • nT(g),  (36) 

nB(V, r) ~ nB(V), (37) 

where nT(V, r) is the number of independent and orthogonal ST(K, c, r, u), and 
riB(V, r) is the number of independent and nonorthogonal SB(K, c, r, u) in irrep 
space V(r). V is the direct sum of V(r): 

v = v ( 1 )  + ...  + V ( r )  + . . .  + V ( G ) .  (38) 

7. Let MC( ) be an optimized MC function obtained from the variance 
method in V(r): 

M C ( r , u ) =  ~ , C ~ ( K , c , r ) S B ( K , c , r , u ) =  ~ ,Cw(K,c , r )Sw(K,c , r ,u ) .  (39) 
Ke Kc 

CB(K, c, r) is linearly independent, but CT(K, c, r) is linearly dependent. Between 
CT(K, c, r) and CB(K, c, r) there exist some restriction conditions, i.e. the coeffic- 
ient CT(K, c, u), whose number is nT(V, r); only the numbers of riB(V, r) are linearly 
independent. MC( ) has the quantum number S, Sz, r, u, and is an optimized 
configuration function satisfying space symmetry, spin symmetry and the Pauli 
principle in MC space. 

8. Suppose 

MC(r)  = ~, MC(r, u), (40) 
u 

where MC(r)  is invariant (up to a phase) under G. 
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3 Symmetrization of MCSX functions 

Let V(i l )  be a subspace of orbitals, and V(i2) be another subspace of orbitals. We 
then define the generator of the unitary group E as 

E(xl ,  il; x2, i2) MC(r) = MC(jl(xl),  il ~ jz(x2), i2) - MC(jz(x2), i2 --* jl(xx), il) 

(41) 

in Eq. (41) (1) il < iz; (2) il belongs to the core space or active space and i2 belongs 
to the active space and virtual space; (3) il and i2 are correlation space [7]. 
E (x l ,  il; x2, i2) spans an invariant subspace under G. In the subspace we define 
E(1, i~; x, i2) as a basic generator and simply express the subspace as V(i~, x, iz). 
Let P1 be the projector of totally symmetric irrep in G, and define 

E(i l ,  x, i2) = PIE( l ,  il, x, i2). (42) 

Between il and i2 the number of invariant subspaces V(il ,  x, i2) (the sequence 
number x varies in different subspaces) is referred to as their degree of correlation 
[7]. If E(i l ,  x, iz) acts on MC(r), we obtain the MCSX function SX(il, x, i2): 

eE( i~, x, i2)MC(r) = S X  ( i~, x, i2), (43) 

where e is a normalization factor. If i~ ¢ i] or i2 i~, then SX(il ,x,  i2) and 
SX(i', x, i~) are orthogonal due to different weight vectors. If il = ia and i2 = i'2, 
then SX(i~, x, i2) and SX(i'~, x, i~) may be nonorthogonal. But to a greater extent 
they are linearly independent. By using the Schmidt process [17] the complete and 
independent set of MCSX functions is generated. The dimension (i.e. the number of 
independent variant parameters) of SX space is no more than the number of all 
subspaces V(i~, x, i2) in orbital variance space, and all SX(iI, x, i2) span a com- 
plete set of MCSX space 

We imagine that an orbital is a point, and a pair of correlation orbitals 
(m(j l (x~) ,  ia) and m(j2(x2),  i2) are an edge in orbital variance space. The equiva- 
lent edge spans a subspace invariant under G, and basically generates a linearly 
independent single-excited SX function. The number of inequivalent edges is no 
less than the dimension of SX space. 

4 Practical example 

In order to illustrate the mathematical method mentioned above, let us consider 
a simplified model of the benzene molecule. Suppose that benzene (C6H6) has 
a core space a(C-C),  a(C-H),  active space n(C), and virtual space o-*(C-C), 
a*(C-H), n*(C) covariant with corresponding CGO space, respectively [7]. The 
orbital variance space has 6 subspaces and 36 orbitals. These molecular orbitals are 

a(C-C): m(1(1),1), m(2(2),1), m(3(3),1), m(4(4),1), 

m(5(5), 1), m(6(6), 1) 

a(C-H): m(7(1),2), m(8(2),2), m(9(3),2), m(10(4),2), 

m(11(5), 2), m(12(6),2) 

n(C): m(13(1),3), m(14(2),3), m(15(3),3), m(16(4),3), 

m(17(5), 3), m(18(6), 3) 
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K c P Q W(1,K) K c P Q W(1,K) 

1 1 I1,2,31 11 ,2 ,31  {222000} 2 1 11 ,2 ,31  11 ,2 ,41  {221100} 
3 1 11 ,2 ,31  11 ,2 ,51  {221010} 4 1 11 ,2 ,31  11 ,2 ,61  {221001} 
5 1 11 ,3 ,21  11 ,3 ,41  {212100} 6 1 11 ,3 ,21  11 ,3 ,51  {212010} 
7 1 [ 1 , 2 , 4 1  11 ,3 ,51  {211110} 7 2 11 ,2 ,31  11 ,5 ,41  {212010} 
8 1 11 ,2 ,51  11 ,3 ,61  {211011} 8 2 11 ,2 ,31  11 ,6 ,51  {211011} 
9 1 11 ,2 ,51  11 ,4 ,61  {210111} 9 2 11,2 ,41 11 ,6 ,51  {210111} 

10 1 11 ,3 ,51  12 ,4 ,61  {111111} 10 2 11 ,3 ,41  12 ,6 ,51  {111111} 
11 1 11 ,2 ,41  1 1 , 2 , 4 f  {220200} 12 1 1 1 , 2 , 4 ]  11 ,2 ,51  {220110} 
13 1 11 ,4 ,51  11 ,4 ,61  {200211} 14 1 11 ,2 ,41  11 ,5 ,41  {210210} 
15 1 11 ,4 ,31  11 ,4 ,51  {201210} 16 1 11 ,5 ,21  ] 1 , 5 , 4 1  {210120} 
17 1 11 ,5 ,31  11 ,5 ,41  {201120} 18 1 11 ,3 ,51  11 ,3 ,51  {202020} 

o-*(C-C): m(19(1),4), m(20(2),4), m(21(3),4), m(22(4),4), 

m(23(5), 4), m(24(6), 4) 

a*(C-H): m(25(1), 5), m(26(2), 5), m(27(3), 5), m(28(4), 5), 

m(29(5), 5), m(30(6), 5) 

rt*(C): m(31(1),6), m(32(2),6), m(33(3),6), m(34(4),6), 

m(35(5), 6), m(36(6), 6). 

The configuration functions I(1B or IT) in space of CGOs may be classified 
according to K, c and expressed by P, Q or {pq}. Because in core space the orbitals 
are doubly occupied for all configurations, these core orbitals are not pointed, 
for example P = { . . .  core . . . ,m(13(1),3), m(14(2),3), m(15(3),3)} = {1,2,3}, 
Q = { ... core . . . ,  m(16(4), 3), m(17(5), 3), m{18(6), 3)} = {4,5,6} etc. The basic 
configuration functions IB(K, c, 1) and 1T(K, c, 1) are listed in Tables 1 and 2 [6]. 

Between BTs and TSTs there are the following relations: 

IB(7,1,1)= 1,2,41 11,3,51= 2-1/2([1 ,2 ,4][1 ,3 ,5]  + [1 ,2 ,5][1 ,3 ,4])  

= 2-1/2([12,22] + [14,20]) 

IB(7,2,1)= 1,2,3111,5,41= - 2 - 1 / 2 ( [ 1 , 2 , 3 ] [ 1 , 4 , 5 ] + [ 1 , 2 , 4 ] [ 1 , 3 , 5 ] )  

= --  2 - 1 / 2 ( [ 8 , 2 2 ]  q- [12,22]) 

Iu(8,1,1)= 1,2,5[ ]1 ,3 ,6 ]=2-1 /2( [1 ,2 ,5 ] [1 ,3 ,6 ]  + [ 1 , 2 , 6 ] [ 1 , 3 , 5 ] )  

= 2-1/2([14,23] + [15,22]) 

IB(8,2,1)= 1,2,3t11,6,5[= - - 2 - 1 / 2 ( [ 1 , 2 , 3 ] [ 1 , 5 , 6 ] + [ 1 , 2 , 5 ] [ 1 , 3 , 6 ] )  

= --  2 - 1 / 2 ( [ 8 , 2 9 ]  -t- [14,23]) 

IB(9,1,1) = 1,2,5[ 11,4,61 = 2 1/2(I-1,2,5][1,4,6] + [1 ,2 ,6][1 ,4 ,5])  

= 2-1/2([14,27] + [15,26]) 

IB(9,2,1) = 1,2,4111,6,51 = - -2-1 /2( [1 ,2 ,4] [1 ,5 ,6]  + [1 ,2 ,5][1 ,4 ,6])  

= -- 2-1/2([12,27] + [14,27]) 
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K c P Q p q K c P Q p q 

1 1 [1,2,3] [1,2,3] 8 8 2 1 [1,2,3] [1,2,4] 8 12 
3 1 [1,2,3] [1,2,5] 8 14 4 1 [1,2,3] [1,2,6] 8 13 
5 1 [1,3,2] [1,2,4] 8 12 6 1 [1,3,2] [1,3,5] 8 22 
7 1 [1,2,4] [1,3,5] 12 22 7 2 [1,2,3] [1,5,4] 8 26 
7 3 [1,2,5] [1,3,4] 14 20 8 1 [1,2,5] [1,3,6] 14 23 
8 2 [1,2,3] [1,6,5] 8 29 8 3 [1,2,6] [1,3,5] 15 22 
9 1 [1,2,5] [1,4,6] 14 27 9 2 [1,2,4] [1,5,6] 12 29 
9 3 [1,2,6] [1,4,5] 12 29 10 1 [1,3,5] [2,4,6] 22 43 

10 2 [1,3,4] [2,6,5] 20 45 10 3 [1,2,3] [4,5,6] 8 57 
11 1 [1,2,4] [1,2,4] 12 12 12 1 [1,2,4] [1,2,5] 12 14 
13 1 [1,4,5] [1,4,6] 26 27 14 1 [1,4,2] [1,4,5] 12 26 
15 1 [1,3,4] [1,4,5] 20 26 16 1 [1,2,5] [1,4,5] 12 26 
17 1 [1,3,5] [1,4,5] 22 26 18 1 [1,3,5] [1,3,5] 26 26 

I s ( 1 0 , 1 , 1 ) =  1,3,5112,4,61 

= 2 - 1 ( [ 1 , 3 , 5 ]  [2 ,4 ,6 ]  + [1 ,4 ,5 ]  [2 ,3 ,6 ] )  + [1 ,4 ,6 ]  [ 2 , 3 , 5 ]  

+ [1 ,3 ,6]  [ 2 , 4 , 5 ] )  

= 2 - 1 ( [ 2 2 , 4 3 ]  + [26,39] + [27,381 + [23,42])  

1 . ( 1 0 , 2 , 1 )  = [1 ,3 ,4f  12,6,51 

= -- 2 - 1 ( [ 1 , 3 , 4 ]  [2 ,5 ,6 ]  + [1 ,4 ,6 ]  [2 ,3 ,5 ]  

+ [1 ,5 ,6 ]  [2 ,3 ,4 ]  + [1 ,3 ,5 ]  [ 2 , 4 , 6 ] )  

= -- 2 -1 ( [20 ,451  + [27,38] + [29,36]  + [22 ,43] )  

Let Pr. act on these BTs; we obtain the SB(K, c, r, u) belonging to irreps, for 
example 

SB(10, 1, 1, 1) = e P l l l B ( l O ,  1, 1) = eP l l ( IT ( lO ,  1, 1) + ( 3 /2)1/2 IT(10, 2, 1)) 

= eP l1 ( [22 ,43 ]  + (3/2)1/2120,45]) 

= e l ( S T ( 1 0 ,  1, 1, 1) + (3/2)1/2ST(10,2, 1, 1)) 

SB(10, 2, 1, 1) = e 'P l l lB (10 ,2 ,  1) 

= e ' P l l (  -- IT(10, 1, 1) -- (2/3)1/2 IT(10, 2, 1) -- (1/3)1/2IT(10, 3, 1)) 

= e'P~l(  - [22 ,43]  -- (2/3)1/2120,45] - (1/3) l/2 [8, 57]) 

= e] (ST(10, 1, 1, 1) + (2/3)1/2ST(10,2, 1, 1)) + (1/3)1/2ST(10,3, 1, 1)) 

where e, el ,  e', e] are normalizat ion factors. The optimized MC function belonging 
to totally symmetric irrep in MC space of C 6 H  6 c a n  be written as 

M C ( 1 )  =- Z CT(K, c) ST(K , c, 1, 1). 
Kc 
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Between these coefficients Ca-(K,c) for K = 7,8,9, 10 there exists a restriction 
condition, respectively. For example, 

CT(8, 1) = CT(8,2) + CT(8,3) 

and the normalization condition: 

} ~ c T ( K , c )  = 1 
Kc 

Therefore, the number of independent parameters is 21 in MC space of C 6 H  6. 
In MCSX space, the number of linearly independent SX functions (the dimen- 

sion of SX space) is 181-7]; these functions are: 

SX(1, 1,4), SX(1, 2,4), SX(1, 3,4), SX(1,4,4), SX(1, 1, 5), 

SX(1, 3, 5), SX( 1, 4, 5), SX(2, 1, 4), SX(2, 2, 4), 

SX(2, 3, 4), SX(2, 1, 5), SX(2, 2, 5), SX(2, 3, 5), SX(2, 4, 5), 

SX(3, 1, 6), SX(3, 2, 6), SX(3, 3, 6), SX(3, 4, 6) 

The number of coefficient variance and orbital variance parameters in MCSCF 
is greatly reduced by spatial symmetry adaptation. 
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